
CS695 Topics in Virtualization and Cloud Computing
Virtualization in Linux KVM + QEMU

Senthil, Puru, Prateek and Shashank

1Virtualization in Linux

2Virtualization in Linux

Topics covered

• KVM and QEMU Architecture
• VTx support

• CPU virtualization in KMV

• Memory virtualization techniques
• shadow page table

• EPT/NPT page table

• IO virtualization in QEMU

• KVM and QEMU usage
• Virtual disk creation

• Creating virtual machines

• Copy-on-write disks

KVM + QEMU - Architecture

3Virtualization in Linux

KVM + QEMU – Architecture

• Need for hardware support

• less privileged rings (rings > 0) are not sufficient to
run guest – sensitive unprivileged instructions

• Should go for

• Binary instrumentation/ patching

• paravirtualization

• VTx and AMD-V

• 4 different address spaces - host physical, host
virtual, guest physical and guest virtual

4Virtualization in Linux

Guest 3

Guest 2

Guest 1

Guest 0

Host 3

Host 2

Host 1

Host 0

KVM

QEMU

Guest Kernel

Guest User

X86 VTx support

/dev/kvm
VMCS + vmx
instructions

KVM QEMU Guest 0-3

KVM

Communication Channels

5Virtualization in Linux

X86 VMX Instructions

• Controls transition between VMX root and VMX non-
root

• VMX root -> VMX non-root - VM Entry

• VMX non-root -> VMX root – VM Exit

• Example instructions

• VMXON – enables VMX Operation

• VMXOFF – disable VMX Operation

• VMLAUNCH – VM Entry

• VMRESUME – VM Entry

• VMREAD – read from VMCS

• VMWRITE – write to VMCS

6Virtualization in Linux

X86 VMCS Structure

• Controls CPU behavior in VTx non root mode

• 4KB structure – configured by KVM

• Also provides space for guest and host register save &
restore

• Example fields

• HLT exiting – if 1 VM Exit on HLT

• CR3-load exiting – if 1 VM Exit on CR3 load

• Exception Bitmap – if bit i is set, VM Exits on
exception i

• VM-entry interrupt – To deliver interrupts during
VM Entry

7Virtualization in Linux

CPU Virtualization in KVM
V

M
 1

 T
h

ea
d

0

V
M

 1
 T

h
ea

d
1

V
M

 2
 T

h
ea

d
0

V
M

 2
 T

h
ea

d
1

V
M

 2
 T

h
ea

d
3

V
M

 2
 T

h
ea

d
2

Physical
CPUs

Process
scheduling

QEMU
Process
threads

VCPUs

Guest OS 1 Guest OS 2

8Virtualization in Linux

Shadow page table

• Problems in memory virtualization

• 3 levels of indirection, MMU can translate 1 level

• GVA -> GPA -> HVA -> HPA must be achieved

• Solution1 - Shadow page table

• Contains GVA -> HPA. MMU will use this instead of
guest page table

• One shadow table for each guest page table

• Incrementally build

9Virtualization in Linux

Shadow page table building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

•Guest wants to create a linear mapping for a process

•Guest does pure demand

• QEMU knows GPA-> HVA mapping (malloc())

1 2 3 4GVA

10Virtualization in Linux

Shadow page table building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1

2

3

1

2

3

Shadow page table
GVA -> HPA

Guest process page table
GVA -> GPA (Read only)

Step 1:

•Guest tries to map GVA 1 -> GPA 1

•Page fault (because of RO) causes VM exit

•KVM sees GPA as 1 by instruction emulation /using register
contents

11Virtualization in Linux

Shadow page table building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1

2

3

1

2

3

Shadow page table
GVA -> HPA

Guest process page table
GVA -> GPA (Read only)

Step 2:

•GPA 1 -> HVA 1 is obtained

• This possible because GPA -> HVA mapping is known to
QEMU/KMV

12Virtualization in Linux

Shadow page table building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1

2

3

1

2

3

Shadow page table
GVA -> HPA

Guest process page table
GVA -> GPA (Read only)

Step 3:

• KVM does lookup on QEMU’s page table to find out
HVA->HPA

•KVM finds out HVA 1 -> HPA C

13Virtualization in Linux

Shadow page table building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1 C

2

3

1 1

2

3

Shadow page table
GVA -> HPA

Guest process page table
GVA -> GPA (Read only)

Step 4:

• KVM updates shadow page table with GVA 1 -> HPA C

•KVM also updates guest page table – by emulating the
instruction which tried to map GVA 1 -> GPA 1

• GVA -> GPA -> HVA -> HPA is done
14Virtualization in Linux

Shadow page table building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1 C

2 B

3 E

1 1

2 2

3 3

Shadow page table
GVA -> HPA

Guest process page table
GVA -> GPA (Read only)

Step 5:

• Similarly other entries are update as and when page
fault happens
• GVA 2 -> GPA 2 -> HVA 2 -> HPA B
• GVA 3 -> GPA 3 -> HVA 3 -> HPA E

15Virtualization in Linux

Shadow page table (additional info)

•Additional questions
• How to identify pages used in page tables to write protect them ?
• How to remove write protection when a page is not used in any page
table ?
• What happens when pure demand paging is not used i.e. (guest builds
the page table before loading on CR3) ?

•Advantages
• No guest OS change is required
• Any OS can be guest
• No special hardware is required

•Disadvantages
• For every page table used by guest.. Shadow version has to be kept.
• Shadow page table must be consistent with guest and host
• Caching shadow page table needs considerable memory

16Virtualization in Linux

EPT/NPT Basics

• Solution2 – EPT/NPT hardware support

• EPT/NTP enabled MMU can translate two levels of
indirection.

• First one from GVA -> GPA and second from GPA ->
HPA

• GVA -> GPA is maintained by guest and GPA -> HPA is
maintained by KVM

• KVM does GPA -> HVA translation - because malloc()

• MMU walks EPT table for every GPA

17Virtualization in Linux

EPT/NPT Building

•EPT solution consists of two tables

•GPA -> HPA - EPT table

• GVA -> GPA – guest process page table

• MMU accesses these two tables to complete address translation

• Guest has full rights on its page table

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1 2 3 4GVA

18Virtualization in Linux

EPT/NPT Building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1

2

3

1 1

2

3

EPT/NTP page table
GPA -> HPA

Guest process page table
GVA -> GPA

Step 1:

•Guest tries to access linear address 1

•Will not cause page fault, because VMCS is configured not
to cause page fault VM exits

• Guest OS will handle this and fill GVA 1 -> GPA 1
19Virtualization in Linux

EPT/NPT Building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1

2

3

1 1

2

3

EPT/NTP page table
GPA -> HPA

Guest process page table
GVA -> GPA

Step 2:

• When guest access the linear memory address GVA 1, the
hardware gets GPA as 1 using guest page table

• And tries to figure out corresponding HPA using EPT table
and cause EPT violation

20Virtualization in Linux

EPT/NPT Building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1 C

2

3

1 1

2

3

EPT/NTP page table
GPA -> HPA

Guest process page table
GVA -> GPA

Step 3:

• EPT violation occurred because corresponding HPA is
not mapped.

• KVM will fill this entry using GPA 1-> HVA 1 -> HPA C

21Virtualization in Linux

EPT/NPT Building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1 C

2

3

1 1

2

3

EPT/NTP page table
GPA -> HPA

Guest process page table
GVA -> GPA

Step 4:

• When reexcutes the faulted instruction, MMU will walk
two table in nested loop to figure out GVA -> HPA

• i.e. for every guest physical address encountered by
MMU, EPT walk will be done to find GPA -> HPA

22Virtualization in Linux

EPT/NPT Building

A B C D E F G H I J K L M N O P Q R S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10GPA

HPA

HVA (QEMU)

1 C

2

3

1 1

2

3

EPT/NTP page table
GPA -> HPA

Guest process page table
GVA -> GPA

Step 5:

• Similarly every EPT table entry is filled after EPT
violation for the corresponding GPA

• since EPT stores GPA -> HPA , the size of EPT table =
guest RAM size

23Virtualization in Linux

EPT/NPT (additional info)

•Advantages

• No guest OS change is required

• Any OS can be guest

• Need not to trap page fault updates

• Size of EPT table is proportional to guest memory size

•Disadvantages

• TLB miss would cause considerable overhead in translation –
Ex. One level page table would cause 3 page table memory
access

• For m level EPT and n level guest page table, EPT solution
access mn + m + n page references

• Hardware support required

24Virtualization in Linux

EPT/NPT Scenario of TLB Miss

25Virtualization in Linux

1 F

4 E

7 4 B

5

6 A

1

2 C

3

4

5

6

1 2

2

3

1 4

4 5

7

CR3 = GPA 6

GPA 5

GPA 4

EPT= HPA D

HPA E

HPA F

Resolve GVA 1 -> GPA 4 :
GPA 6 -> HPA A requires access to HPA D, HPA E = 2
Read GVA 1 = GPA 4 from HPA A = 1
GPA 4 -> HPA B requires access to HPA D, HPA E = 2
Read GVA 1 = GPA 2 from HPA B = 1
GPA 2 -> HPA C requires access to HPA D, HPA F = 2
Total 8 access

EPT Table
GPA -> HPA

Page Table
GVA -> GPA

QEMU– IO device emulation

• Basic IO devices are emulated by QEMU

• Example - Keyboard, Mouse, Display, hard drive and
NIC

• Device access from guest is trapped (both PIO and
MMIO) by KVM

• KVM passes control to QEMU to handle IO

• QEMU injects interrupts from devices through KVM

• To emulate DMA, QEMU uses threads to do the IO

26Virtualization in Linux

QEMU– IO device emulation- Example

•Assume disk drive having following interface
• register x to specify sector number

• register y to receive commands (1 read, 0 write)

• register z to read/write data

• When guest wants to read sector number 10
1. Guest does PIO 10 on register x

2. QEMU saves this information in device state

3. Guest issues read command using PIO 1 on register y

4. QEMU maps sector 10 on virtual disk file and reads necessary
content

5. issues an interrupt

6. Guest reads 512 bytes from register z using PIO

7. QEMU gives the data it read from VD

27Virtualization in Linux

QEMU– IO device emulation- Example

28Virtualization in Linux

PIO 10 => X

Saves X=10
in disk state

PIO 1 => Y

QEMU reads
sector 10
from VD fileVirtual Interrupt

Interrupt
handlers
reads
data

PIO read from Z

Data read from file

Guest KVM QEMU

KVM + QEMU – Usage

• Prerequisites
• Linux Distribution
• Install QEMU packages yum install qemu* - in Fedora or
rpm based
• apt-get install qemu* - in Ubuntu or deb based
• Ensure hardware support grep vmx /proc/cpuinfo

• Download some ISO image from IITB FTP server

•Virtual disk (VD)
• A file at host which acts as disk drive for virtual machine
• VD can be a file or a raw partition

• Create VD
• qemu-img create –f raw disk1.img 10G

• Creates disk of 10G in raw format (sectors are directly
mapped to file offset)

29Virtualization in Linux

KVM + QEMU – Usage cont.

• Creating first VM
• To boot from ISO qemu-kvm –m 1G –hda disk1.img –cdrom F10-

i686-Live.iso

• -m says size of RAM, –smp for number of processors

• -hda primary hard disk, -cdrom for CD rom for guest

• After this command, you will get the standard installation
wizard running in guest. Easy !

• Once installed on disk1.img, qemu-kvm –m 1G disk1.img will
boot the guest from disk1.img directly

• QEMU+KVM = host user space process
• Every virtual machine runs as user space process on the host

• Can be monitored using standard Linux tools ps, top and kill
etc

• One thread for every CPU in the guest (use –smp option)
30Virtualization in Linux

KVM + QEMU – Usage Cont.

•Copy-On-Write VD
• COW disks – versioning / snapshots at disk levels

• can choose any version without loosing consistency

• Equivalent to disk level backups

•Supported only on cow, qcow, qcow2

• Create COW disk
• qemu-img create –f qcow2 disk2.cow2 10G

• Install the VM

• Take a snapshot qemu-img snapshot –c s1 disk2.cow2

• Start the VM, create and delete few files inside the VM and
shutdown

• Take another snapshot s2

• Now to rollback to s1, qemu-img snapshot –a s1

disk2.cow
31Virtualization in Linux

References

1. Intel® 64 and IA-32 Architectures Software
Developer’s Manual

2. http://www.linux-kvm.org/page/Documents

3. http://wiki.qemu.org/Manual

4. Accelerating Two-Dimensional PageWalks for
Virtualized Systems

32Virtualization in Linux

http://www.linux-kvm.org/page/Documents
http://www.linux-kvm.org/page/Documents
http://www.linux-kvm.org/page/Documents
http://wiki.qemu.org/Manual

